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A numerical algorithm is described which, it is believed, can accurately model the dynamics 
of a two-dimensional, inviscid, incompressible fluid with unparalled spatial resolution. The 
fluid is assumed, however, to be divided into regions of uniform vorticity, conservation of vor- 
ticity ensuring that this remains true for all time. Like contour dynamics, the algorithm is con- 
cerned with following the evolution of the boundaries of vorticity discontinuity (contours). 
Unlike contour dynamics, the algorithm automatically removes vorticity features smaller than 
a predetined scale. For example, two contours enclosing the same uniform vorticity merge into 
one if they are close enough together. Also, the curvature along a contour is not allowed to 
exceed the inverse of the cutoff scale. At present, calculations with contour surgery resolve fluid 
motions extending over four to five orders of magnitude of scales (13 to 20 octaves). Such 
high-resolution pictures of two-dimensional vortex dynamics have been facilitated by and 
indeed depend critically upon a nonlocal adaptive node adjustment scheme, and a variety of 
tests quantify the accuracy of the technique. G 1988 Academic Press, Inc. 

1, INTRODUCTION 

Presented below is a new and robust numerical technique for studying inviscid, 
incompressible, two-dimensional flow. The technique extends contour dynamics 
(CD) [2, 3, 171, an algorithm designed for a piecewise-constant vorticity dis- 
tribution, by truncating the accessible range of spatial scales, in effect, introducing a 
maximum resolution. This approximation permits greatly extended integrations 
using a contour method at spatial resolutions far surpassing standard (continuous 
vorticity) methods. 

The evolution of a piecewise-constant vorticity distribution depends onZy on the 
boundaries of vorticity discontinuity or contours, hence the name “contour 
dynamics.” The purpose of a CD algorithm is to accurately track the distortions of 
the contours with finite spatial and temporal resolution. Calculations with CD, 
however, inevitably develop spatial structure of exponentially increasing complexity 
requiring correspondingly increasing spatial resolution. As the computer time per 
time step is proportional to the square of the spatial resolution, such calculations 
quickly become unaffordable. 

The present paper introduces an extension to CD, called “surgery,” which over- 
comes the difficulties just noted. In the next section, the algorithm is described in 
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detail starting from the contour-dynamical core and proceeding to the surgical 
extension. New methods of resolution distribution and velocity determination are 
shown to significantly improve the accuracy of the CD part of the algorithm. The 
third section tests the entire contour surgery (CS) algorithm with direct numerical 
integrations. Parameters in the algorithm controlling surgery, spatial, and temporal 
resolution are varied for a single flow, and in one instance, a calculation is reversed 
to attempt to reproduce its initial conditions. Several additional calculations 
explore problems that have up to now been examined only by continuous vorticity 
techniques or pose great difficulties for such techniques. The final section outlines 
the present applications of the algorithm and extensions to geometries of a 
geophysical nature [6]. 

2. THE NUMERICAL ALGORITHM 

In an unbounded, inviscid, incompressible fluid, the motion of a fluid particle 
depends only on the instantaneous vorticity distribution. Contour dynamics 
furthermore assumes that the vorticity distribution is piecewise-constant, conser- 
vation of vorticity ensuring that this remains true for all time. In this case, the 
motion of a fluid particle depends only on the instantaneous positions of the con- 
tours or boundaries of vorticity discontiuity and is calculated by the following sum 
of contour integrals (see Fig. 1 for definitions and [2, 3, 17, or 43 for a derivation): 

$=u(x)= -kc Gk$ log lx-xkl dx,. 
k Ck 

Since fluid particles cannot cross the contours, the contours are defined by the same 
set of particles for all time, and this set also satisfies Eq. (1). 

FIG. 1. The calculation of the velocity tield on contours. The evaluation point is x and the contour 
integrals in Eq. (1) are taken around all contours Ck of vorticity discontinuity (with k ranging over the 
number of contours). xlr is a point on C, where the vorticity jumps by ~5~ crossing C, inwards. 
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Contour Representation 

In practice, each contour is approximated by a finite number of nodes connected 
together by interpolation functions [15, 14, 18,4]. As the contours deform under 
their self-generated velocity field, additional nodes are often inserted to maintain 
adequate resolution, particularly in regions of developing curvature [18]. Nodes 
may also be removed from regions where the curvature is weakening. As computer 
time per time step is proportional to the square of the number of nodes, the 
calculation can get quite costly when a contour becomes severely deformed. It is 
therefore essential to redistribute the nodes at each time step in such a way as to 
resolve as great a range of scales with the least number of nodes for as long as 
possible. An approximate solution to this optimization problem is described next. 

The distribution of nodes is controlled by a node density function p whose con- 
tour integral with respect to arc length gives the total number of nodes on a given 
contour. To resolve a wide range of scales, it is clear that p must increase with local 
curvature. In fact, a node density proportional to curvature would resolve features 
on all scales equally well. But it is not enough that p be dependent only on local 
curvature. Experience has shown that p must also increase with increasing velocity 
variation. If the node spacing exceeds or is of the same order as the scale of the 
velocity variation, the contour cannot react properly. This idea is implemented by 
making p a nonlocal function of curvature, and the following expression for the 
average node density between nodes j and j+ 1 emerged from a great deal of trial 
and error: 

lzj 
pj’ 1 + 6kjj2112 

ei l”iKil 
CjZC - 

I d; 

(24 

(2b) 

(2c) 

(2d) 

where 6 is the surgical or cutoff scale, L is a length typical of the large-scale vor- 
ticity distribution, p times L is the spacing of successive nodes on a circular vortex 
of radius L 9 6, a is a number between 0 and 1 that controls how quickly the node 
density rises with curvature, ei = IIxi+, -xiJ( is the straight-line distance between 
two adjacent nodes i and i + 1, oi is the jump in vorticity across the segment 
(i, i+ 1) (wi = 13~ in Eq. (1) for i on the kth contour), rci is the curvature at node i 
computed by passing a circle through the nodes i- 1, i, and i+ 1, 
d, = llxj - i(xi + xi+ ,)[I is the distance between node j and halfway between nodes i 
and i+ 1, and the sum in Eq. (2d) runs over all nodes. 

The nonlocality of the node density function presents itself through Kj, Eq. (2d). 
The term e, loil/d$ is roughly proportional to the variation of the velocity across 
the segment (j, j$ 1) contributed by the segment (i, i + 1). In Eq. (2c), the depen- 
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dence of cj on lc, touches on the question of accuracy for an algorithm with a 
finite range of scales (6 ~0). The first term dominates for “large” scales, 
rc,L .g (.pp)- ‘/(I -u), while the second is designed to be at least equally important 
near the cutoff scale, cj = 0(6-l). Considering just the first term, a value of a less 
than unity implies that the largest scales are resolved best. For example, an isolated 
circular vortex of sufficiently large radius R would be resolved by (approximately) 
(27c/p)(R/L)‘-” nodes, a number which decreases with decreasing radius when 
a < 1. The variation in the number of nodes used to resolve different scales is con- 
sistent with the expectation that the largest scales determine the greatest part of the 
dynamics. The second term in Eq. (2~) is intended to become important only for 
scales near the cutoff scale 6 and impacts on one form of surgery that takes place 
when curvatures exceed 6 -’ (approximately), namely the formation of corners. Cor- 
ners are places along a contour where three successive nodes are forced into an 
acute angle as a result of inadequate resolution. More discussion of corners may be 
found in the subsection on surgery below, but it is appropriate here to discuss how 
Eq. (2) behaves near the cutoff scale. The functional form of pj(r2,) in Eq. (2a) (li,, 
defined in Eq. (2b), being merely the average of iZj and e,+ 1) limits the minimum 
distance between nodes for any curvature to 6/2 ‘I* However, since the curvature at . 
a node is in fact computed by passing a circle through that node and its two 
neighbors, the maximum computed curvature is limited to O(6 - ‘) whence the 
minimum distance between nodes tends to be nearly or slightly greater than 6. 

Interpolation 

In the algorithm, a contour consists of its nodes and the interpolation functions 
between nodes. Linear interpolation is the simplest choice, but higher-order inter- 
polation can significantly improve accuracy for a small cost in computer time. The 
part of the contour joining two nodes is approximated by a locally-determined 
cubic polynomial; between two nodes i and i + 1 on a given contour, the contour 
takes the form 

x(P) = xi + P(ai7 bi) + ?(P)( -bi9 ai) 

(a,, bi) = x;, , -x; 

‘I(P)=“iP+PiP2+YiP3 

(3) 

for O<p< 1 (see Fig. 2). ai, pi, and yi are determined by q(l)=O, K(O)= ici, and 
K( 1) = K~+ 1, where 

K(P) = 
d2v/dp2 

ei( 1 + (dq/dp)2)3’2’ 

The distribution of nodes is such that q, the normal departure of the contour from a 
straight line divided by the distance between the two nodes, is small compared with 
unity. This allows one to neglect (dq/dp)2- compared with 1 in the expression for 
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FIG. 2. The interpolation between nodes. Subscripts have been supressed (e.g., e = e,). 

~c(p) above rendering the curvature a linear function of p between nodes and a 
piecewise-linear function around the contour (except at corners as noted below). 
Under these approximations, Eqs. (3) and (4) imply 

ai= -feitci-ieifci+l 

ji = &?gci 

yi = iei(rci+ 1 - K~). 

(5) 

One may well ask why continuity of curvature is preferred over continuity of 
tangent slope, as the latter appears to involve one less differentiation of the curve. 
Tests of a scheme that forces the contour, at each node i, to be tangent to the 
weighted vector (xi+ I -xi)/e: + (xi-xiP,)/ef- I has shown that the present cur- 
vature continuity scheme actually leads to smaller errors (in terms of the errors sA, 
.sU, and E, discussed in the subsection on accuracy below). Indeed, in both schemes, 
the coefficients of the cubic polynomial q(p) involve information at 4 successive 
nodes (hence the 3rd-order accuracy noted below), and so it is not surprising that 
one combination of the information at the 4 nodes leads to greater accuracy than 
another. In practice, the slight error in the continuity of tangent slopes in the 
curvature scheme presents no observable “side-effects.” 

Node Redistribution 

At each time step, nodes are redistributed around the contour by way of the 
known variation of the contour between each pair of adjacent nodes. If a contour 
has corners, the node redistribution takes place between the corners, and the cor- 
ners remain fixed. If the contour does not have corners, one node is held fixed, and 
the remaining nodes are adjusted relative to this fixed node. In both cases, the 
method for redistribution outlined below is identical. 

Let 1 be the index of the first (and fixed) node and n be either the index of the 
node preceding the next corner or the last node on the contour. The first step is to 
compute the quantity 

4= i Piei 
i= 1 

W 
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and define ii to be the nearest integer to q plus 2. ii - 1 will be the number of nodes 
between the fixed nodes after redistribution. Next, the node densities pi are mul- 
tiplied by C/q so that the sum in Eq. (6a), after this redefinition of pi, equals n”. 
Finally, the positions of the new nodes j = 2, . . . . ii are found by seeking i and p such 
that 

i- 1 

1 Ple,+P;eiP=j--1 (6b) 
I= 1 

and placing the jth new node between the old nodes i and i + 1 at the position x(p) 
given in Eq. (3). 

Velocity Determination 

This new node distribution/interpolation scheme gives rise to a significant 
improvement in the evaluation of the velocity field from Eq. (1). Since q is small 
compared with unity, the velocity integral between any pair of nodes may be 
expanded in a perturbation series in q: 

(dU)j= - fi 4 log II X- (xi+P(a;, bi)+YI(Fbj, ai))ll (ai, hi)+$ (-bi, aj) 

(~U)o;= - (ai, bj) fi 4 log /IX - (xj+p(% bi))II 

(du)li=(ai7 bi)(a,(Y-Yi)-b,(x-xj)) i,’ ,,x-,x~(+f~~ b,l),,2 
I I? I 

- ( -bi, ai) fi 4 2 log Ilx - (xj+p(ai, bj))ll. 

(Au)~~ is the contribution to the integral from integrating along the line segment 
connecting the two nodes, while (du)ri represents a correction linear in q. The fact 
that (Au),~ can be evaluated explicitly has often been used by other researchers 
[ 10, 1 l] to avoid ill-conditioned quadrature formulae [4]. The fact that (Au),~ can 
also be evaluated explicitly has not been previously used, but, as discussed below, it 
allows one to use many times fewer nodes than required in linear interpolation for 
the same accuracy. (Au), to first order in q is given by (without the subscripts i) 

h=(a,b){1-dr-(1-d)s-c2h+c[~+(~+2d)~+f(~-~)+~~I} 

+(-b,a){o!+(f+d)B+($++d+d*-c*)Y 

+ (s- r)[ad+ /Id* + yd3 - c’(fl+ 3dy)] - c*hf }, @a) 
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(8b) 
c= [a(y-yJ- b(x-xi)]/e2 

d= [~(x-xi)+b(y-~~i)]/e~ 

e = (a2 + b’)l’* 

j-=2 (d)-c2y 

g = v(d) - c”(P + WI 

r = log l/x - Xi// 

s=log Ilx-xxi+J. 

A minor correction is made when the evaluation point x happens to be inside the 
circle whose diameter is the segment connecting two adjacent nodes, say xi and 
Xi+l* In this case, the perturbation series given by Eq. (7) is no longer valid, par- 
ticularly for x near the contour but not including the two nodes. However, an 
equally valid perturbation series results if, as illustrated in Fig. 3, the line segment 
connecting the two nodes is shifted parallel to itself (so the shifted segment inter- 
sects x(p*), and the contour integral is expanded about this shifted segment. In 
other words, define q* = q - q(p*) with p* = di and use XT, xi*, r, and q* in place of 
the corresponding unstarred quantities in Eqs. (7) and (8). In actual practice, no 
perceptible change is observed in computational efficiency. 

In this subsection, quantitative measurements are presented of the kinematical 
accuracy of the interpolation, velocity calculation, node redistribution, and time 
stepping components of the algorithm when surgery is absent (6 = 0). Most of the 
effort is directed at developing measures of error for an example flow, the Kirchoff 
elliptical vortex, which is steady and for which simple expressions govern the 
velocity and position of a fluid particle on the boundary at any time t [8]. The 
subsection concludes with an application to an unsteady flow. 

The elliptical vortex is described by x(0) = cos 8, r(e) = 1-i sin 8, 0 < 8 < 2n for 

FIG. 3. Calculating the velocity when the evaluation point is close to a contour. 
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any aspect ratio A, and the uniform vorticity o within the vortex is taken to be 2~. 
The test algorithm replaces the exact ellipse by a fixed number of nodes n dis- 
tributed according to Eq. (2) for a given curvature power a, L = 1, and 6 = 0. The 
desired distribution of nodes is obtained iteratively by starting from an equal angle 
(in 0) distribution and then applying Eqs. (2)-(6) five times (further iterations 
proving unnecessary). After each iteration, x and 1~ for each node are multiplied by 
(x2 + 2’~‘) “* to keep the nodes on the elliptical boundary. 

Two measures of error associated with interpolation and velocity determination 
lead the discussion: the positive area difference between the exact and interpolated 
ellipse (the so-called L, area difference) scaled by the area of the ellipse, 

and the RMS velocity difference (the L, velocity difference), 

E =cz=l Ilui--u,I12)1’2 
” cc=, ll~i11*Y’* ’ 

where q and ij are the interpolated and exact departures of the contour from a 
straight line between nodes i and i+ 1 (see Eq. (3)), and u, and iii refer to the 
velocity at the ith node for the interpolated and exact vortex, respectively. It is a 
simple exercise to show that linear interpolation leads to an area error of O(n -‘). 
Since the velocity at a node involves a sum over all nodes, one might expect the 
velocity error to be one order less accurate; however, cancellation effects reduce the 
error to 0(~~) (a specific example is given below). Cubic interpolation can be 
expected to be at most two orders more accurate. In fact, the area error is 0(~~) 
while the velocity error, apparently not benetitting from further cancellations, is 
O(K~). These asymptotic dependencies are expressed in terms of fi = 2n/n as 

E, = C,( A, a) /i” 

E, = C,(l, a) p”. 
(10) 

Table I lists C, and C, versus ;1 for the three powers a = i, 3, and 1. It has been 
determined to three decimal places that the choice a = 3 minimises the velocity error 
for all 2. Furthermore, it appears that E, =0.029fi3 independent of 1. Such .a 
property is ideal for the construction of an accurate numerical algorithm because 
errors in the computed velocity field most rapidly accumulate, being of O(nP3). 
We note that the smallest area error does not coincide with the smallest velocity 
error. The area error is minimised at a = 4, but C,(I1,j) increases with 2 
(C,( 10, ;, = 0.515). 

The smallest area and velocity errors for linear interpolation of an ellipse are 
obtained by distributing nodes according to curvature to the one-third power [ 191, 
a = 1, which corresponds to spacing the-nodes at equal intervals in 8. In this case, 
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TABLE I 

A Comparison of Accuracy between Three Different Interpolations, 
Curvature to the One-third, Two-thirds, and First Power 

I 

a=$ a=3 a=1 

cu C.4 C” c.4 C, CA 

1 0.0290 0.0125 0.0290 0.0125 0.0290 0.0125 
2 0.0423 0.116 0.0288 0.116 0.042 1 0.278 
3 0.0658 0.247 0.0287 0.266 0.0658 1.48 
4 0.0944 0.385 0.0288 0.427 0.0978 4.28 
5 0.127 0.527 0.029 1 0.584 0.142 9.10 
6 0.164 0.673 0.0295 0.733 0.201 16.0 
I 0.205 0.821 0.0299 0.874 0.276 25.0 
8 0.250 0.971 0.0305 1.00 0.367 35.9 
9 0.299 1.12 0.0311 1.13 0.471 48.4 

10 0.352 1.28 0.0317 1.24 0.587 62.5 

Note. Shown are C, = e,,/F3 and C, = aA/p4, where E,, is the L, velocity error and cA is the L, area 
error (both defined in the text). @=2n/n, and n= 512 nodes are used. The comparison is shown as a 
function of the aspect ratio of the test ellipse, A. 

sA =b2/6 (asymptotically), independent of aspect ratio, and E,= Cfi2 with 
C = 0.084, 0.089, 0.105, and 0.136 for il = 1, 2,4, and 8, respectively. 

The above errors measure only the instantaneous accuracy of the algorithm while, 
in a numerical integration, one is more concerned with the error made over one 
time step due to all the numerical approximations. Consider then first distributing 
n = 256 nodes as described above for a given curvature power a, next integrating 
the system forward in time using a typical time step, At = 0.05, in a 4th-order 
Runga-Kutta scheme, and finally redistributing the nodes (holding n fixed at 256). 
The interpolated ellipse is next compared with the known position of the exact 
ellipse by measuring the closest distance d, between each node i and the exact 
elliptical boundary and computing the RMS distance error normalized by the 
length-scale, A- ‘12: 

(11) 

Table II lists lO’.s,(A, a) for A = 1 to 10 and three selected curvature powers. Overall, 
the choice a = 3 fares best, a = f being slightly worse, and a = 1 appearing distinctly 
unstable. 

Finally, it is worth noting that similar accuracy results have been found for non- 
equilibrium vortices. The procedure to obtain E, wavers only slightly from that dis- 
cussed above in that the exact time evolution of the vortex is unknown. Essentially, 
for a single vortex boundary, a calculation with n nodes carried through one time 
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TABLE II 

The Error E, after One Time Step and One Node Adjustment Mulfipfied by 10’ 
versus the Aspect Ratio L of the Ellipse for Three Curvature Powers a 

1 ll=f lZ=f a=1 

1 0.8440 0.8440 0.8440 
2 2.135 2.814 3.007 
3 5.302 5.349 4.980 
4 6.892 6.800 6.616 
5 I.111 1.691 6.451 
6 8.211 8.103 17.68 
I 8.533 7.831 19.60 
8 8.712 7.122 12.64 
9 9.042 1.725 32.04 

10 9.629 1.182 56.48 

Note. At =0.05, n=256 nodes. 

step At is compared with a calculation with 2n nodes carried through two time 
steps of size t At. The nodes are redistributed after the first time step on the lower 
resolution vortex but are not redistributed after either time step on the high 
resolution vortex. As an example, take n = 256 and At =0.05 for the “squashed” 
ellipse, x = cos 8, y = (1 -X/X,,) 1-l sin 0. In the limit x0 --) co, the elliptical vortex 
is recovered, and the results for E, compare well with those in Table II; for example, 
when il = 1, E, = 1.007 x lo-’ compared with 0.844 x 10m7 obtained in Table II. For 
initial conditions departing significantly from the elliptical vortex, such as when 
x0 = 2 and J, = 5, the curvature power a = f continues to perform better than either 
a=fora=1:inthiscase~,=4.921x10~‘,3.695x10~’,and8.622x10~‘fora=~, 
3, and 1, respectively. 

Surgery 

The development of regions of rapidly increasing curvature and ever growing 
contour lengths presents an insurmountable obstacle to extended calculations using 
CD. Calculations almost inevitably grind to a halt either from insufficient 
resolution or insufficient computer resources (e.g., Figs. 7 and 8 from [ 163 and 
Figs. 3, 5-10, 12-14, 16, and 17 from [4]). By the introduction of a minimum 
length scale, 6, CS allows the efficient computation of exceedingly complex vorticity 
dynamics for times unreachable by CD. Such a minimum scale represents an 
approximation, but it is not unlike a maximum wavenumber in a spectral model or 
a minimum grid spacing in a grid-point model. CS assumes that the neglected scales 
of motion ( 1) behave as a passive tracer, (2) cascade to ever finer scales, and (3) do 
not accumulate to a significant fraction of the total vorticity. The degree to which 
these assumptions are justified can only be determined from a careful examination 
of a wide variety of numerical experiments, some of which are presented below. 
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The algorithm enforces the minimum or cutoff scale 6 as follows. When two con- 
tours enclosing identical vorticity find themselves closer than 6, they are joined as 
illustrated in Fig. 4. The node where the joining takes place becomes two differently 
labelled nodes, and each of these nodes receives the special status of being a corner. 
Corners are nodes which are fixed during node redistribution and make acute 
angles with their adjacent nodes. When a single contour tries to break into two 
pieces by having two distinct parts of itself closer than 6, an operation identical to 
that shown in Fig. 4 is performed. 

Corners also develop when the curvature exceeds 6 ~’ (approximately)-an acute 
angle is then forced by the node density function, Eq. (2). The nodes adjacent to a 
corner are attached to the corner by straight line segments as a result of setting the 
curvature to zero at all three nodes, and this has the effect of greatly reducing the 
resolution near the corner once the nodes are redistributed after surgery (the num- 
ber of nodes in the vicinity of the corner typically drops by 5-10). Corners are 
eliminated if they become obtuse by simply returning the corner to the status of a 
simple node. 

No further surgical operations are performed except for the elimination of con- 
tours with too few nodes (4 or fewer). Even so, roughly 80 % of the computer code 
deals with surgery, but fortunately, only about 7 % of the computer time is spent 
on surgery. The actually observed timing for the non-surgical part of the algorithm 
in seconds per time step using 64-bit arithmetic on a two-pipe, vector-processing 
Cyber 205 is given by 1.37 x 10P3n + 1.01 x lo-‘n*, where n is the total number of 
nodes. Thus, it takes 11.5 s to move 1000 nodes in one time step. 

The flow chart presented in Table III summarizes the CS algorithm. 

Blind Alleys 

The development of the algorithm was not without many unsuccessful ventures. 
Needless to say, much was learned on the turbulent path to the present algorithm 
that could prove useful for further enhancements of CD/CS. 

One of the most important aspects of the present algorithm is the use of a non- 
local node density function. Contour crossing and related spatial errors result when 
nodes are distributed according to a local function of curvature. The generic 
situation is the presence of a region of high curvature whose radius of curvature is 
comparable to or less than the distance between nodes on a nearby contour. The 
high curvature region induces a velocity field which varies too rapidly for the 
nearby contour to distort properly, and no matter how small the time step may be, 
the lack of degrees of freedom prohibits the nearby contour from “seeing” the 

FIG. 4. The merging of two contours. 
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TABLE III 

Flow Chart 

I. Initialization 

a. Read in data specifying the vortex shape and algorithm parameters. 
b. Calculate the cubic interpolation coefficients (Eqs. (3t(5)). 
c. Redistribute the nodes (Eqs. (2), (6)). 
d. Save the initial condition for post-processing. 

II. Advection 

a. Recalculate the interpolation coefficients. 
b. Calculate the velocity field (Eq. (8)). 
c. Repeat steps a and b three more times to complete the Runga-Kutta integration, then pass to 

item III. 

III. Surgery 

a. Search for new corners between existing corners. 
b. Search for contour merger situations (Fig. 4). 

(i) I f  a single contour is found to satisfy the merger condition, break the contour into two 
pieces. Introduce two new corners at the break (at node i’ in Fig. 4). 

(ii) I f  two contours containing identical interior vorticity are found to satisfy the merger 
condition, join them into a single contour. Introduce two new corners at the place of joining 
(at node i’ in Fig. 4). 

c. Repeat step b until all possible merger situations have been examined, then pass to item IV. 

IV. Post-surgery 

a. Re-calculate the interpolation coefficients. 
b. Redistribute the nodes. 
c. Periodically save data for post-processing. 
d. Return to item II unless a specified number of time steps have been taken, in which case the 

calculation ends. 

approaching high curvature region, and contour crossing is inevitable. A very large 
time step in the present algorithm would also result in spatial errors-nodes might 
become separated too much in one time step for accurate interpolation to take 
place. However, the calculations presented in the next section employ a sufficiently 
small time step to prevent significant interpolation errors. 

Various alternative methods for interpolation between nodes have been con- 
sidered. Cubic splines were not used because of their potentially wild behaviour 
near developing corners, particularly when the curvature varies by four or more 
orders of magnitude around a contour. The method discussed in [4] where the 
cubic between each two nodes i and i + 1 is forced to pass through the nodes i - 1 
and i+ 2 as well and then calculating the curvature directly from this cubic 
polynomial causes the contour to buckle exponentially. Finally, higher order inter- 
polations (e.g., quartic) require, among other things, the explicit calculation of one 
further term in the velocity field expansion rendering the algorithm hopelessly 
complex and inefficient. 
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Without interpolation (using straight line segments between nodes) the 
accumulated error, in terms of loss of conservation of circulation, etc., is much too 
large to perform long-time calculations. With interpolation, but using Gaussian 
quadrature (numerical quadrature) to perform the contour integrals in the velocity 
determination artificially induces Kelvin-Helmholtz instability along thin strands 
of vorticity (see Fig. 13 in [4]). The present method of quadrature, in which 
the integral along a curved segment is performed explicitly to first order in the 
departure of the segment from a straight line, avoids this numerical instability. 

Perhaps the greatest effort was invested tackling problems that arose from 
improper surgery. Despite its superficial simplicity, surgery represents a logical 
nightmare, comprising some thousand lines of code in the algorithm. Space does 
not permit a discussion of each of the blind alleys encountered trying to cope with 
rare events, but one problem is particularly important because it constrains the 
choice of the various algorithm parameters. Recall that contours are joined if the 
distance between a node on one (part of a) contour and the straight-line segment 
connecting two nodes on another (part of a) contour is less than the cutoff scale 6. 
In other words, surgery does not look at the actual distance between the curved 
contours, since it has been assumed that the contour’s departure from a straight 
line between its nodes is small. However, if the cutoff scale is smaller than this 
departure, surgery might not take place even though the curved contours are closer 
than the cutoff scale and, worse still, possibly crossing each other. Such errors may 
be avoided by choosing the cutoff scale large enough, specifically 6 > max(eq), 
where eq is the normal departure from a straight segment of the contour between 
two adjacent nodes and “max” means the maximum over all nodes. To see how this 
requirement constrains the algorithm parameters, consider the following tractable 
example. For a circular vortex of radius R, it is simple to show that 
max(eq) = e2/8R while, from the node density function, e = pL(R/L)" (neglecting 
the second term in Eq. (2~)) yielding the intermediate result max(eq) = 
(1/8R) P~L'(R/L)~". The expression for max(eq) is greatest for the largest scales, 
Rc L, when a> f (justifying the approximation used for e above) whence we 
obtain the estimate 

6 1 
z>p2. (12) 

In practice, Eq. (12) is an overestimate, and values of S one-tenth as small as the 
right-hand side of Eq. (12) have been used without causing contour crossing errors. 

3. CALCULATIONS WITH CONTOUR SURGERY 

The error estimates of the previous section provide only a rough guide to the 
actual performance of the algorithm over an extended integration period. In the 
first half of this section, multiple calculations beginning with identical initial con- 
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TABLE IV 

The Parameter Values and the Initial and Final Number of Nodes 
for the Seven Elliptical Vortex Calculations 

253 

Case P Al 6 n, “f 

1 n/100 0.05 1o-4 153 2581 
2 n/200 0.05 10-d 294 2027 
3 R/50 0.05 10-4 82 1298 
4 n/100 0.025 10-4 154 2430 
5 n/l00 0.1 1om4 146 1607 
6 R/100 0.05 10-5 153 2120 
7 n/100 0.05 lo-’ 153 2869 

ditions assess the dynamical sensitivity of the algorithm to variations in resolution, 
time step, and cutoff scale, and one of these calculations is run backwards to check 
time-reversibility. The second half of this section is a portrait gallery exhibiting 
several long-time calculations that highlight a few problems of current interest in 
two-dimensional vortex dynamics. 

Dynamical sensitivity is assessed by tracking the degree to which various quan- 
tities remain conserved over the course of the evolution. The quantities monitored 
are the total circulation r, the angular momentum J, the x- and y-centroids x, and 

L 

t.63 1 6.8) / 8.88 r= .m+ J= .trn 

n 

-!A 0 
8 ll!E 17.2 

FIG. 5. The evolution of a perturbed ellipse. p = n/100, Ar = 0.05, 6 = 10m4. The time is indicated in 
the upper left corner of each frame. The panels on the right give an indication of the accuracy of the 
calculation. The upper panel displays, as a function of time, departures of circulation r(A), angular 
momentum J(V), and energy E (+) from exact conservation multiplied by 104. The middle panel 
displays the errors in x centroid X, (A) and y  centroid y,(V) similarly multiplied by 104. The bottom 
panel shows the total number of nodes. 
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y,, and the nondimensional excess energy E (see Eqs. (2.1.) and (2.2) of [4]). All of 
these quantities have contour integral representations (see Eqs. (A2), (A4), and 
(A8) of [4]) and are calculated as follows. For r, J, xc, and y,, the contour 
integration is exact to first order in the departure r~ of the contour from a straight 
line between adjacent nodes. The energy, whose calculation requires a double con- 
tour integration, relies on three-point Gaussian quadrature between adjacent nodes 
(for the quadrature coefficients, see [ 1, p. 9161). Out of convenience, all quantities 
are computed using w/211 in place of the vorticity o since the peak vorticity in all 
the calculations always equals 27~ 

Seven calculations are compared that differ only in the choices of p, d t, and 6 
(see Table IV). The large-scale length L is taken to be unity throughout. The initial 
condition is a 4 : 1 ellipse perturbed with the superposition of the growing and 
decaying 3-fold symmetric linear eigemode [4]: 

d-’ cos me 
x(%, 0) = (cos %,A-’ sin %)+ SinZ %+ 1-2 cos2 % (A-’ cos 8, -sin %), (13) 

with i =4, E =0.005, and m  = 3. At this aspect ratio, the 3-fold symmetric eigen- 
mode is the only one that leads to linear instability. 

The evolution of case 1 in Table IV, Fig. 5, in many ways typifies unstable ellip- 
tical vortex evolution. Initially, the eigenmode amplifies, in this case causing the 
vortex to become more egg-like in shape. This is followed by a strongly nonlinear 
stage where one or two long filaments are thrown off either or both ends (ellipses of 
greater eccentricities tend to break into two or more pieces-see Fig. 14 of [4] and 
Fig. 15 below). Next, the asymmetric velocity field arising from the distorted shape 
of the interior “core” of the vortex compresses and thereby enlarges one section of 

FIG. 6. A close-up comparison between cases 1 (left) and 6 (right) of Table IV at t = 15.7. The 
calculation on the right has one-tenth the cutoff scale of that on the left, otherwise the calculations are 
identical. 
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the filament(s) where the compressional strain is most extreme. The location of this 
enlarged region along the filament(s) propagates with nearly the same angular 
velocity as the interior vortex core, and the two collide. The re-attachment is short- 
lived however, more rotational fluid is flung off a second time, and the core of the 
vortex further reduces its eccentricity. In some cases, the filaments may collide a 
second time leaving the core yet more circular. However, once the core has suf- 
ficiently weak eccentricity, the filaments remain in the exterior field of the core. The 
variable strain field of the rotating core rapidly cascades the filaments to small 
scales, and the flow tends to an ellipse of reduced aspect ratio within a diffuse field 
of vorticity. An alternative explanation for the observed reduction in aspect ratio 
makes use of the cororating-frame streamfunction (see [9, Sect. 33). 

The seven cases in Table IV are next compared in detail. The seven calculations 
cannot be visibly distinguished from each other apart from the varying lengths of 
the very thin filaments, for example, cases 1 and 6 are compared in Fig. 6 (left and 
right frames), the latter having one-tenth the cutoff scale of the former (t= 15.7). 

r 

FIG. 7. Comparison across resolution, p. The six panels illustrate the departures from conservation 
of r, J, E, x,, and y, multiplied by 10“ as well as the total number of nodes for three values of p: 
n/200 (V), n/100 (A), and n/SO ( + ). 
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However, differences do emerge upon examining the departures from convervation 
of r, J, x,., y,, and E. Three comparisons are made: (1) across resolution (cases 1, 
2, and 3), Fig. 7; (2) across time step (cases 1, 4, and 5), Fig. 8; and (3) across 
cutoff scale (cases 1, 6, and 7), Fig. 9. Surgical errors are noticeable from the sud- 
den jumps in error and may either decrease or increase the circulation and angular 
momentum; for example, when a contour breaks into two pieces, I’ and J decrease 
(for positive vorticity) while the merger of two separate contours increases r and J. 
The energy variation tends to oppose the variations in circulation and angular 
momentum. 

As expected, smaller values of p, At, and 6 lead to greater accuracy. However the 
relatively weak variation across time step suggests that At = 0.05 is sufftciently small 
for calculations of this length. Larger improvements occur when ~1 and 6 are 
decreased. The smaller value of p results in significantly better conservation 
between times when surgery takes place while smaller 6 greatly reduces surgical 
errors. Note that halving P nearly doubles the number of nodes making the - 
calculation four times more expensive while reducing the cutoff scale by ten only 

r 
ft.0 - 

FIG. 8. Comparison across time step, At. Three values of Al are compared: 0.025 (V), 0.05 (A), and 
0.1 ( + ). 
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slightly increases the total number of nodes. The weak dependence of the number of 
nodes on the cutoff scale is related to the favoritism given to the large scales by 
choosing the curvature power a = 3. Few nodes are used to resolve the smallest 
scales, so that a dramatic increase in the range of scales does not carry with it a 
correspondingly dramatic increase in the number of nodes. 

Next consider running a calculation back to its initial condition. Case 1 of Table 
IV was run back from t = 7.5, before surgery had taken place, to t = 0. Given the 
degree to which the vortex had been distorted by t = 7.5, it may be surprising that 
the reversed calculation succesfully reproduces the original initial conditions with 
very small errors in the conserved quantities (see Fig. 10). In general, however, this 
is not a fair test of an algorithm’s accuracy. Had the ellipse been perturbed initially 
by numerical noise alone, no semblance of the initial conditions would have been 
reproduced. During the integration backwards, disturbances created by small errors 
in interpolation and time stepping that would normally decay in a forward 
integration grow on the way back to t = 0. However, these disturbances arise from 
errors which are three to four orders of magnitude smaller than the initial 

-8.t 

FIG. 9. Comparison across cutoff scale, 6. Three values of 6 are compared: 1O-5 (V), lo-’ (A), and 
10-j(+). 
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rapid approach to circular symmetry has been termed “axisymmetrization.” 
Numerous CS calculations have been performed to reproduce some of the results of 
[9] as well as to complement that study by examining initial conditions with 
relatively small eccentricities and large vorticity gradients. These initial conditions 
are difficult to compute for spectral models because (1) the time scale for axisym- 
metrization greatly increases for small eccentricities and large vorticity gradients, 
(2) the “arms” that are ejected tend to be very small and thin, and most importan- 
tly, (3) the author has found equilibria with small eccentricities and tight gradients 
that resist axisymmetrization in fully nonlinear calculations (in preparation). 

A calculation is presented in which the initial condition tends to axisymmetrize 
but doubtfully does so completely. Four nested ellipses each of aspect ratio 1= 2.5 
are arranged to resemble the continuous distribution w(r) = 274 1 - P), p = 2; the 
contour with vorticity W(Y) is the ellipse x = r cos 8, y = A- ‘r sin 6 for 0 < 0 < 27r, 
and the discretization is such that, for N levels of vorticity, the jth contour has 
rj = (j/N) ‘lp, and vorticity jump Gj = 2x/N, j = 1, . . . . N. The evolution of the vortex 
is shown in Fig. 11. Note also the diagnostic panels showing departures from 
conservation of circulation, angular momentum, energy, and centroid as well as the 
total number of nodes as a function of time. At t = 7.3, p was increased to 0.05 in 
order to speed up the calculation at the risk of greater error, yet the error never 
exceeds 0.1 % in f, J, or E. 

The evolution qualitatively parallels that computed spectrally [9] in several 
easily visible respects: (1) the initially rapid gradient intensification and loss of 
eccentricity of the central structure, (2) the connection of the “arms” with the cen- 

FIG. 11. The evolution of a nested, initially elliptical vortex. The algorithm parameters for this and 
subsequent figures are the same as used in case 1 of Table IV, and the diagnostic panels on the right are 
described in Fig. 5. p was increased to 0.05 at t = 7.3. 

581/77/i-17 
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0 2 4 6 8 

TIME 

FIG. 12. The minimum distance between the two outer contours in Fig. 11 versus time. 

tral structure, and (3) the generation of new “arms” resulting from (2). One aspect 
of axisymmetrization that lends itself ideally to CS is the (inviscid) limit of gradient 
intensification (in spectral calculations, gradient intensification is limited by high- 
order diffusion/model resolution). Consider the time evolution of the minimum dis- 
tance between the two outer contours in Fig. 11 (see Fig. 12). The two contours 
rapidly approach each other, coming within one one-thousandth of their initial 

1 r=f,7ui ~=25.s655 
28.0 E=1.ma 

F3 
-28.0 1 1 

csmxa 

FIG. 13. Symmetric vortex merger, or partially. p was increased to 0.05 at I = 7. 
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separation distance by t = 7.25. After this time, gradient intensification is largely 
abated, but likely begins again when the “arms” reconnect near t = 9 (surgery 
before this time prevented a simple calculation of intercontour distances.) 

The second example of a nested-contour CS calculation also germinated in a 
recent study [ 111. There, in part, spectral methods were used to examine the 
merger of two identical, initially circular and nonuniform vortices. Necessary and 
sufficient conditions for symmetric merger were obtained for the approximate 
system of two “elliptically desingularized” vortex patches [12] and generalised, 
with the support of several high-resolution spectral calculations, to nonuniform 
vortices. An approximate sufficient condition requiring no tendancy information at 
the initial time is given by 

7CJ 
a=?< 11.4. 

r 

For two distant uniform circular vortices, o = (d/r)* with d being the distance 
between vortex centres and r the radius of each vortex. 

A calculation is presented which deliberately chooses (T close to the critical value 
for merger. The initial condition pits two identical vortices of unit radius separated 
by three radii from centre to centre. The vorticity distribution in each vortex is 
similar to that of the ellipse discussed above (a discretization of o(r) = 27r( I- r*)) 
with two contours. In Fig. 13, the two vortices repeatedly connect and disconnect 
until, at late times, a bridge persists between the two peaks of vorticity. It is suspec- 
ted that the general dumbbell shape seen in the latter part of the calculation will 
persist indefinitely, particularly because this shape is part of a family of vortex 
equilibria (from unpublished work of the author). It is noted in [ll] that a small 

6.88 

FIG. 14. Asymmetric vortex merger. p was increased to 0.05 at I = 8.5. 
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amount of dissipation inevitably brings the centres of vorticity close enough 
together for “strong” (rapid) merger. 

Little is known about the merger of unequal-sized vortices due to the greater 
variety of possibilities involved. For instance, a strong vortex might prefer to “shear 
out” a weaker partner rather than merge with it. Also the “strength” of the vortex 
depends on its concentration as well as its total circulation-a point vortex cannot 
be destroyed by a diffuse vortex of any strength. Consider the battle between two 
uniform vortices (o = 27t), one of unit radius and the other of radius ,/@, 
separated by a distance 3 from centre to centre, Fig. 14. The small vortex narrowly 
avoids being ripped apart and loses a small fraction of its area to the small strand 
of vorticity seen swimming around both vortices by t = 6.5. An enlarged region 
forms along this strand around t = 7 as a result of the negative strain field produced 
by the little-affected large vortex. Between t = 7 and 9.5, this enlarged region rolls 
up as a result of the shear outside the large vortex. Note that an enlargement on an 
isolated strip of vorticity would tend to roll up in the opposite direction, so it is 
clear that the roll up is dominated by shear. Between t = 7.5 and 10, the stagnated 
region between the two vortices captures and enlarges other parts of the filament. 
The V-shaped region at t = 8.75 is shortly thereafter divided between the two vor- 
tices. The part which is drawn close to the smaller vortex induces a region of high 
curvature on the small vortex by t = 10.5. Between t = 10.5 and 11.5, this region of 
high curvature amplifies significantly as it moves through a region of negatives 
along the contour strain and nearly “breaks” as it passes very close to the larger 
vortex. Several other similar events occur during the evolution, all of which appear 
to initiate in the regions of extreme strain and then to succomb to the strong shear 
around the vortices. 

r= .m J= .m 
ml3 1-1 

FIG. 15. The breakup of a thin strip of vorticity. 
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r= .5963 I= 1.&W 

FIG. 16. The breakup of a thin annular band of vorticity. 

This leads naturally to the question of the stability of thin bands of vorticity so 
often generated in calculations. Figures 15 and 16 show that numerical noise is suf- 
ficient to trigger the Kelvin-Helmholtz/Rayliegh instability on an isolated strip and 
ring of vorticity. However, despite great care (high resolution) to allow for such 
instabilities in calculations where the thin bands are not isolated, very little 
“instability” is ever seen. It is not the numerical scheme that is scpressing these 
instabilities; one does observe the occasional “rollup,” as in Figs. 5 and 14, but by 
and large mechanisms are operating to prevent the disintegration of thin strips. The 
mechanisms appear to be associated with the relatively slow growth rate of a distur- 
bance, maximally 0.20 (where o is the vorticity in the strip), compared to the rate 
at which the large-scale flow is changing, w. Strain is an important factor [7], but 
other factors such as shear and the proximity of the strip to a central structure may 
deter rollup as well. 

4. CONCLUSIONS 

Contour dynamics has been extended to systematically eliminate small scales ‘of 
motion. As a CD calculation proceeds, the development of small scales requires 
rapidly increasing resolution requirements, and the calculation quickly becomes 
prohibitively expensive. Contour surgery, in effect, gives up on the small scales with 
the assumption that they have little dynamical importance and a negligible effect 
on the large-scale dynamics for the duration of the calculation. CS is not inherently 
dissipative, in the sense that inviscid invariants necessarily decrease; surgery, 
like spatial and temporal discretization, is simply another approximation of the 
dynamical equations that allows for their efficient solution. With little cost, errors 



264 DAVID G. DRITSCHEL 

produced by surgery can be made comparable to errors in the CD-part of the 
algorithm. 

However, CS, like other numerical algorithms, cannot be blindly driven beyond 
its limits of applicability. The nearly inevitable and incessant drive of an inviscid 
fluid to produce finer and finer scales of motion prevents any linite algorithm from 
accurately modelling even the largest scales of motion for arbitrarily long times. 
Considering just the effects of truncation, algorithms must (1) do something to 
remove the small scales of motion and (2) make sure that this removal process does 
not seriously affect the scales far separated from the truncation scale, a requirement 
that can only be satisfied for a finite time. In surgery, (1) vorticity features thinner 
than a prescribed scale are removed and (2) the surgical technique attempts to 
minimize its local effects on the flow. 

To estimate the maximum duration of an “accurate” calculation, one must first 
define the error which is to be kept small. At the least, one wishes to correctly 
model the orientation and positions of the dominant vortex structures, and for this 
purpose, the accumulated error in the (non-zero) conserved quantities C (e.g., 
circulation, angular momentum, energy) 

dfm) = At 2 IC(t,) - C(O)13 
k=l 

(15) 

where tk = k At and t, is the duration of the calculation, should be kept small. As 
an example, with C- r*/J, C crudely representing the rotation rate of the flow (C 

TABLE V 

The Phase Error sC, in Degrees, for All the 
Calculations Presented in This Paper 

Calculation EC (IFl 

Case from Table IV (Fig. 5) 
1 
2 
3 
4 
5 
6 
I 

Figure 
11 
13 
14 
15 
16 

0.556 17.25 
0.013 13.5 
2.852 17.1 
0.239 15.7 
3.045 18.1 
0.213 15.525 
0.638 17.2 

0.058 8.85 
0.015 1.75 
0.053 11.5 
0.525 15.65 
0.023 16.7 

Note. f,,, is the duration of the calculation. 
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is the angular frequency in the case of a circular vortex), Table V lists the phase 
error Ed (in degrees) versus t, for all the calculations presented in this paper. In 
particular, note the sensitivity of Ed to changes in the algorithm parameters for the 
seven cases in Table IV. In applications where the moderately fine scale structures 
are important, it may not be sufficient to keep ~~ small, and, in the end, one may 
have to resort to reproducibility at different resolutions. 

In a concurrent study [S], the contour surgery algorithm is being used to 
examine the stability of sharp vorticity interfaces. There, in part, the smooth vortex 
boundaries of gently perturbed, linearly stable equilibria are shown to develop an 
apparently limitless degree of convolution. High resolution requirements are vital to 
capture this phenomenon. 

The CS algorithm can be adapted to study flows in different geometries, by using 
a different Green’s function in Eq. (1). For flow on a sphere [6], in fact the same 
Green’s function may be used (except that the position vector x is three-dimen- 
sional), and the extension of the contour surgery algorithm is nearly trivial. It is 
also possible to study multi-layer quasi-geostrophic flow, and both studies aim to 
assess the importance of the geophysical environment in the vortex dynamics of the 
atmosphere. 
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